Planet Mars am 20. Dezember 2007 um 21:59 Uhr

Mission InSight: DLR-Maulwurf auf Marsboden abgesetzt

Senkrecht auf flachem Grund steht er bereit für seine historische Mission: Am 12. Februar 2019 um 19:18 Uhr MEZ ist der Marsmalwurf HP³ (Heat Flow and Physical Properties Package) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit dem robotischen Arm des NASA-Landers InSight ausgesetzt worden.

 

In den kommenden Wochen soll die ferngesteuerte Rammsonde erstmals in der Geschichte der Raumfahrt bis zu fünf Meter tief in den Marsboden eindringen, um Temperatur und Wärmeleitfähigkeit des Untergrunds zu messen und daraus den Wärmestrom aus dem Inneren des Mars zu bestimmen. Der Wärmestrom gibt den Forschern eine Kennzahl zur thermischen Aktivität des Roten Planeten. Daraus lässt sich schließen wie sich das Innere des Mars entwickelt hat, ob er noch immer über einen heißen flüssigen Kern verfügt und was die Erde im Vergleich so besonders macht.

„Wir sind froh, dass das Absetzen unseres HP³-Experiments auf dem Marsboden so einwandfrei geklappt hat“, sagt der leitende Wissenschaftler des Experiments, Prof. Tilman Spohn vom DLR-Institut für Planetenforschung in Berlin. HP³ steht nun stabil rund eineinhalb Meter von der Muttersonde entfernt. „Jetzt hoffen wir, dass dem ‚Mole‘, unserem Maulwurf, kein größerer Stein auf seinem Weg in den Untergrund in die Quere kommt“, so Spohn weiter. Zuvor wurde bereits das Seismometer SEIS (Seismic Experiment for Interior Structure) mitsamt einer zusätzlichen Schutzabdeckung gegen Wind und Temperaturschwankungen in ähnlicher Entfernung wie HP³ von der InSight-Muttersonde auf den Marsboden gesetzt. SEIS und HP³ stehen etwa einen Meter voneinander entfernt.

 

Thermische Evolution der Planeten und das Leben auf der Erde

„Thermophysikalisch gesehen, kann man Planeten als Wärmekraftmaschine begreifen, die Vulkanismus, Tektonik, und Magnetismus erzeugt“, erklärt Prof. Tilman Spohn. Wärmeflussmessungen sind wichtige Randbedingungen für die Modellierung der thermischen Entwicklung der Erde, des Mars und anderer Planeten. Während das Seismometer und die Beobachtung der Schwankungen der Rotationsachse mit dem InSight-Experiment RISE (Rotation and Interior Structure Experiment) den inneren Aufbau des Mars erhellen, schränkt der gemessene Wärmestrom Hypothesen über die Entwicklung des Mars ein.

Nach weitgehender Überzeugung der Wissenschaftler hat die geologische Entwicklung eines Planeten große Bedeutung für seine Lebensfreundlichkeit bis hin zu den Ereignissen, die das Leben überhaupt entstehen lassen. Auf der Erde bildeten sich im Laufe der Entwicklung Kontinente und Ozeane, die sich tektonisch ständig gegeneinander verschieben und verändern. Die Flachmeere der Kontinente oder die Vulkanketten in den Ozeanen könnten die Orte gewesen sein, an denen das Leben entstand. Dem Mars fehlen diese tektonischen Elemente, einerseits vermutlich, weil er kleiner ist, andererseits, weil er nicht genügend Wasser hat, um den Prozess der Plattentektonik, wie auf der Erde, über einen längeren Zeitraum oder dauerhaft zu „schmieren“. Zwar hatte der frühe Mars mehr Wasser und Eis als heute und war durchaus zumindest zeitweise lebensfreundlich. Mit Hilfe der Messungen von InSight wollen die Forscher die planetenphysikalischen Aspekte dieser komplexen Zusammenhänge besser verstehen.

 

Stück für Stück in die Tiefe

Dafür zieht der Maulwurf hinter sich ein mit Temperatursensoren bestücktes, fünf Meter langes Flachbandkabel in den Marsboden hinein, mit dem nach Erreichen der Zieltiefe die Temperaturverteilung mit der Tiefe und ihre Änderung mit der Zeit gemessen wird. Ergänzend misst das am InSight-Lander angebrachte Radiometer (Infrarotstrahlungsmesser) die Temperatur des Marsbodens an der Oberfläche. Derzeit wird der Betrieb des DLR-Instruments vorbereitet und geplant.

 

Das HP³-Instrument auf der NASA-Mission InSight

Die Mission InSight wird vom Jet Propulsion Laboratory (JPL) in Pasadena, Kalifornien, im Auftrag des Wissenschaftsdirektorats der NASA durchgeführt. InSight ist eine Mission des NASA-Discovery-Programms. Das DLR steuerte zur Mission das Experiment HP³ (Heat Flow and Physical Properties Package) bei. Die wissenschaftliche Leitung liegt beim DLR-Institut für Planetenforschung, welches das Experiment federführend in Zusammenarbeit mit den DLR-Instituten für Raumfahrtsysteme, Optische Sensorsysteme, Raumflugbetrieb und Astronautentraining, Faserverbundleichtbau und Adaptronik, Systemdynamik und Regelungstechnik sowie Robotik und Mechatronik entwickelt und realisiert hat. Daneben sind beteiligte industrielle Partner: Astronika und CBK Space Research Centre, Magson und Sonaca, das Institut für Photonische Technologie (IPHT) sowie die Astro- und Feinwerktechnik Adlershof GmbH. Wissenschaftliche Partner sind das ÖAW Institut für Weltraumforschung und die Universität Kaiserslautern. Der Betrieb von HP³ erfolgt durch das Nutzerzentrum für Weltraumexperimente (MUSC) des DLR in Köln. Darüber hinaus hat das DLR Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Energie einen Beitrag des Max-Planck-Instituts für Sonnensystemforschung zum französischen Hauptinstrument SEIS (Seismic Experiment for Interior Structure) gefördert.

Ausführliche Informationen zur Mission InSight und zum Experiment HP³ finden Sie auf der DLR-Sonderseite zur Mission mit ausführlichen Hintergrundartikeln sowie in der Animation und der Broschüre zur Mission und über den Hashtag #MarsMaulwurf auf dem DLR-Twitterkanal.

 

Deutsches Zentrum für Luft- und Raumfahrt (DLR)