Asteroid Ryugu wahrscheinlich Bindeglied der Planetenbildung
Vom kosmischen Staub zu den Planeten
Das Sonnensystem mit seinen Planeten bildete sich vor rund 4,5 Milliarden Jahren. Zahlreiche bruchstückhafte Zeitzeugen dieser frühen Phase ziehen bis heute als Asteroiden ihre Bahnen um die Sonne. Rund Dreiviertel davon sind kohlenstoffreiche C-Typ-Asteroiden wie auch 162173 Ryugu, der 2018 und 2019 das Ziel der japanischen Weltraummission Hayabusa2 war und die sich gegenwärtig auf ihrem Rückflug zur Erde befindet.
Zahlreiche Wissenschaftler, darunter auch Planetenforscher des Deutschen Zentrums für Luft- und Raumfahrt (DLR), untersuchten den knapp einen Kilometer großen nah der Erdbahn kreuzenden kosmischen „Schutthaufen“ intensiv. Nun zeigen in der Fachzeitschrift NATURE veröffentlichte Infrarot-Aufnahmen der Raumsonde, dass der Asteroid rundum fast vollständig aus hochporösem Material besteht. Demnach hat sich Ryugu größtenteils aus den Bruchstücken eines durch Einschläge zertrümmerten Mutterkörpers gebildet. Die hohe Porosität und der damit verbundene geringe innere Zusammenhalt der Gesteinsbrocken auf Ryugu sorgen dafür, dass solche Körper beim Eintritt in die Erdatmosphäre vermutlich in zahlreiche Fragmente auseinanderbrechen. Deshalb lassen sich kohlenstoffreiche Meteoriten nur sehr selten auf der Erde finden, weil die Atmosphäre tendenziell einen höheren Schutz vor ihnen bietet.
Temperaturverhalten verrät Dichte
Diese Untersuchung der globalen Eigenschaften von Ryugu bestätigen und ergänzen die Erkenntnisse, die der deutsch-französische Lander MASCOT im Rahmen der Hayabusa2-Mission bereits für die Landeumgebung auf Ryugu erbrachte. „Fragile, hochporöse Asteroiden wie Ryugu sind wahrscheinlich das Bindeglied in der Evolution von kosmischem Staub zu massiven Himmelskörpern“, sagt Dr. Matthias Grott vom DLR-Institut für Planetenforschung, einer der Autoren der aktuellen NATURE-Veröffentlichung. „Hier schließt sich eine Lücke im Verständnis der Planetenbildung, da wir solches Material bei Meteoritenfunden auf der Erde bisher kaum nachweisen konnten.“
Die Forscher um Erstautor Prof. Tatsuaki Okada von der japanischen Raumfahrtagentur JAXA hatten in mehreren Messreihen im Herbst 2018 mit dem Infrarot-Sensor TIR (Thermal Infrared Imager – Messungen in Wellenlängen des thermalen Infrarot zwischen 8 und 12 Mikrometern) auf Hayabusa2 im Tag-und-Nachtzyklus den Verlauf der Oberflächentemperatur des Asteroiden analysiert. Dabei stellten sie fest, dass sich die Oberfläche nach Sonnenaufgang bis auf kleine Ausnahmen sehr schnell erwärmt. „Die schnelle Erwärmung im Temperaturbereich von rund minus 43 Grad Celsius bis plus 27 Grad Celsius lässt auf eine geringe Dichte und zudem hohe Porosität des Materials mit vielen Hohlräumen schließen“, erklärt Dr. Matthias Grott. Ferner bemerkenswert: Rund ein Prozent der Brocken unterscheidet sich von den meisten Brocken auf Ryugu: Diese waren auf ihrer Oberfläche kälter und ähneln eher den Meteoriten, die wir auf der Erde finden können. „Dabei handelt es sich um massivere Bruchstücke aus dem Inneren eines ursprünglichen Mutterkörpers, oder diese stammen von anderen Quellen und sind erst später auf Ryugu gefallen“, ergänzt Dr. Jörn Helbert vom DLR-Institut für Planetenforschung, der ebenfalls Autor der aktuellen NATURE-Veröffentlichung ist.
Von Planetesimalen zu Planeten
Die fragile poröse Struktur der C-Typ Asteroiden könnte der Struktur von Planetesimalen entsprechen, die zu Beginn der Planetenentstehung, der Akkretion, im solaren Urnebel entstanden sind und bei unzähligen Kollisionen die Planetenbildung vorantrieben. Fast die gesamte Materie der präsolaren Wolke aus Gas und Staub ballte sich in der jungen Sonne zusammen. Als eine kritische Masse erreicht war, setzte in ihrem Zentrum der wärmeerzeugende Prozess der Kernfusion ein.
Um die junge Sonne, die fast die gesamte Materie der präsolaren Wolke in sich vereinigte, sammelte sich der Rest aus Staub, Eis und Gas in einer rotierenden Akkretionsscheibe. Durch die Wirkung der Schwerkraft formte sich in dieser Scheibe vor rund 4,5 Milliarden Jahren erste Planetenembryonen: so genannte Planetesimale. Nach einer vergleichsweise kurzen Zeitspanne von vielleicht nur zehn Millionen Jahren entstanden aus diesen Planetesimalen zunächst die Planeten und ihre Monde. Viele kleine Körper – Asteroiden und Kometen – blieben dabei übrig und konnten sich wegen der Schwerkraftstörungen, vor allem durch Jupiter, des mit Abstand größten und massereichsten Planeten, nicht zu weiteren Planeten zusammenballen.
Allerdings sind die Prozesse der Frühgeschichte unseres Sonnensystems nicht in allen Details verstanden. Viele Aussagen beruhen nur auf Modellen und ließen sich noch nicht durch Beobachtungen bestätigen, auch weil Spuren aus dessen Frühzeit rar sind. „Die Ursachenforschung am Objekt ist daher in erster Linie auf extraterrestrische Materie angewiesen, die in Form von Meteoriten aus den Tiefen des Sonnensystems auf die Erde gelangt“, erläutert Dr. Jörn Helbert. Darin enthalten sind Bestandteile, die aus jener kritischen Zeit der Entstehung von Sonne und Planeten stammen. „Zudem benötigen wir Missionen zu den kleinen Körpern aus der Frühzeit des Sonnensystems wie Hayabusa2 , um die Modelle zu bestätigen, zu ergänzen oder – bei entsprechenden Beobachtungen – sie auch zu widerlegen.“
Ein Gesteinsbrocken wie viele auf Ryugu
Bereits im Sommer 2019 hatten Ergebnisse des deutsch-französischen Landers MASCOT gezeigt, dass es an der Landestelle auf Ryugu ausschließlich größere Brocken gab, die hochporös und fragil sind. „Insgesamt sehen wir in den nun veröffentlichten Ergebnissen eine schöne Bestätigung der Resultate des DLR-Radiometers MARA auf MASCOT“, freut sich Dr. Matthias Grott als wissenschaftlicher Leiter von MARA. „Es konnte jetzt gezeigt werden, dass der von MARA analysierte Gesteinsbrocken typisch für die gesamte Oberfläche des Asteroiden ist. Damit bestätigt sich auch, dass Bruchstücke der häufigen C-Typ Asteroiden wie Ryugu durch geringen inneren Zusammenhalt beim Eintritt in die Erdatmosphäre wahrscheinlich leicht fragmentieren und tendenziell die Atmosphäre schwerer bis hinunter zur Erdoberfläche durchdringen als andere Asteroidentypen aus kompakterem Material.“
Am 3. Oktober 2018 war MASCOT im freien Fall mit Schrittgeschwindigkeit auf Ryugu gelandet und hüpfte mehrere Meter weiter, ehe das rund zehn Kilogramm schwere Experimentpaket zur Ruhe kam. Auf der Oberfläche bewegte sich MASCOT mit Hilfe eines rotierenden Schwungarms fort. So konnte MASCOT auf die „richtige“ Seite gedreht werden und wegen der geringen Anziehungskraft von Ryugu sogar Sprünge auf der Asteroidenoberfläche vollführen. Insgesamt war MASCOT rund 17 Stunden auf Ryugu aktiv.
Proben von Asteroid Ryugu auf dem Weg zur Erde
Aus dem Orbit kartierte Hayabusa2 den Asteroiden in hoher Auflösung und nahm an zwei Landestellen Proben des urtümlichen Körpers auf, die derzeit in einem Transportbehälter versiegelt mit der Sonde zurück zur Erde reisen. Die Kapsel mit den Proben soll Ende 2020 in Australien landen. Bisher gehen die Forscher davon aus, dass das Material von Ryugu chemisch etwa dem der chondritischen Meteorite entspricht, die auch auf der Erde gefunden werden. Chondren sind kleine, millimetergroße Gesteinskügelchen, die sich im solaren Urnebel vor 4,5 Milliarden Jahren gebildet haben und als Urbausteine der Planetenentstehung gelten. Bisher können die Forscher allerdings nicht ausschließen, dass es sich um kohlenstoffreiches Material handelt, wie es auch auf dem Kometen 67P/Churymov-Gerasimenko im Rahmen der ESA-Mission Rosetta mit dem vom DLR gesteuerten Lander Philae gefunden wurde.
Zu dieser Frage wird die Analyse der Proben von Ryugu , die auch am DLR stattfinden, mit Spannung erwartet. „Genau für diese Aufgabe – und natürlich für weitere zukünftige Missionen, bei denen extraterrestrische Proben zur Erde gebracht werden wie beispielsweise MMX – haben wir am DLR-Institut für Planetenforschung in Berlin im letzten Jahr mit dem Aufbau des Sample Analysis Labors (SAL) begonnen“ sagt Dr. Jörn Helbert. Im Rahmen der japanischen Mission Martian Moons eXploration (MMX) an der sich das DLR beteiligt, ist geplant, 2024 zu den Marsmonden Phobos und Deimos zu fliegen und 2029 Proben von den asteroidengroßen Monden zur Erde zu bringen. Teil der Mission MMX wird auch ein mobiler deutsch-französischer Rover sein.
Quelle: Deutsches Zentrum für Luft- und Raumfahrt (DLR)